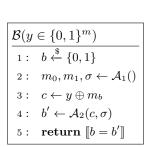
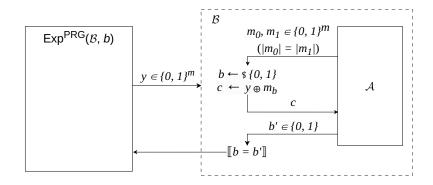
Clase 5: "one-time-pad" pseudoaleatorio

Fernando Virdia, versión: 0.0.1, junio 2024

Lemma 4 Sea G un (ε, t) -PRG. Un PR-OTP Π^G que utiliza G, otorga (ε', t') -secrecy con $\varepsilon' = 2\varepsilon$ $y \ t' \approx t$.

Demostraci'on. Supongamos de haber encontrado un adversario $\mathcal A$ que corre en tiempo $\leq t'$ y que tiene ventaja $\mathsf{Adv}(\mathsf{Exp}^{\mathsf{OTS}},\mathcal A) > \varepsilon'$ cuando "juega". A partir de $\mathcal A$ construiremos $\mathcal B$ que corre en tiempo $t \approx t'$ y que juega $\mathsf{Exp}^{\mathsf{PRG}}$.





Calculemos $Adv(Exp^{PRG}, \mathcal{B})$:

• Si \mathcal{B} recibe $y \leftarrow G(s)$ en $\mathsf{Exp}^{\mathsf{PRG}}$, internamente crea para \mathcal{A} el mismo ambiente de la versión "bit-guessing" de $\mathsf{Exp}^{\mathsf{OTS}}$. Por lo tanto,

$$\Pr[\mathsf{Exp}^{\mathrm{PRG}}(\mathcal{B},0) \Rightarrow 1] = \Pr[\overline{\mathsf{Exp}_{\Pi^G}^{\mathrm{OTS}}}(\mathcal{A}) \Rightarrow 1].$$

• Si \mathcal{B} recibe $y \stackrel{\$}{\leftarrow} \{0,1\}^m$, simula nuevamente $\overline{\mathsf{Exp}^{\mathrm{OTS}}}$ para \mathcal{A} , pero en este caso es con un cifrado OTP!

$$\Pr[\mathsf{Exp}^{\mathrm{PRG}}(\mathcal{B}, 1) \Rightarrow 1] = \Pr[\overline{\mathsf{Exp}^{\mathrm{OTS}}_{\mathrm{OTP}}}(\mathcal{A}) \Rightarrow 1].$$

Abusando la notación, sea $b' \leftarrow \mathcal{A}_2(c \leftarrow y \oplus m_b)$ y repliquemos la demostración de Lemma 3, para obtener

$$\begin{split} \forall b \quad & \Pr[\mathsf{Exp}^{\mathsf{PRG}}(\mathcal{B}, 1) \Rightarrow 1] = \Pr[b' \Rightarrow b] \\ & = \frac{1}{2} \Big(\Pr[b' = b \mid b = 0] + \Pr[b' = b \mid b = 1] \Big) \\ & = \frac{1}{2} + \frac{1}{2} \Big(\Pr[b' = 1 \mid b = 1] - \Pr[b' = 1 \mid b = 0] \Big). \end{split}$$

Dado que $y \sim U(\{0,1\}^m)$, $y \oplus m_0 \sim y \oplus m_1 \sim U(\{0,1\}^m)$. De acuerdo, las variables aleatorias $\mathcal{A}_2(y \oplus m_0)$ y $\mathcal{A}_2(y \oplus m_1)$ tienen la misma distribución.

$$\Pr_{y}[\mathcal{A}_{2}(y \oplus m_{0}; R) = b \mid R = r] = \Pr[(y \oplus m_{0}) \in \mathcal{A}_{2}^{-1}(b) \mid R = r] \\
= \sum_{c \in \mathcal{A}_{2}^{-1}(b) \mid R = r} \Pr_{y}[c = y \oplus m_{0}] \\
= \sum_{c \in \mathcal{A}_{2}^{-1}(b) \mid R = r} \Pr_{y}[c = y \oplus m_{1}] \\
= \Pr[(y \oplus m_{1}) \in \mathcal{A}_{2}^{-1}(b) \mid R = r] \\
= \Pr_{y}[\mathcal{A}_{2}(y \oplus m_{1}; R) = b \mid R = r].$$

⁴O equivalentemente, como corolario del secreto perfecto del OTP.

 $^{^5}y \oplus m_0$ y $y \oplus m_1$ no son independientes, pero tienen la misma distribución. A_2 nunca ve ambas variables al mismo tiempo.

Sigue que,

$$\Pr[b' = 1 \mid b = 1] = \Pr[\mathcal{A}_2(y \oplus m_1) = 1]$$

= $\Pr[\mathcal{A}_2(y \oplus m_0) = 1]$
= $\Pr[b' = 1 \mid b = 0],$

y por lo tanto $\Pr[\mathsf{Exp}^{\mathsf{PRG}}(\mathcal{B},1) \Rightarrow 1] = \frac{1}{2}$, y

$$\begin{split} \varepsilon & \geq \mathsf{Adv}(\mathsf{Exp}^{\mathsf{PRG}}, \mathcal{B}) = \left| \Pr[\mathsf{Exp}^{\mathsf{PRG}}(\mathcal{B}, 0) \Rightarrow 1] - \Pr[\mathsf{Exp}^{\mathsf{PRG}}(\mathcal{B}, 1) \Rightarrow 1] \right| \\ & = \left| \Pr[\overline{\mathsf{Exp}^{\mathsf{OTS}}}(\mathcal{A}) \Rightarrow 1] - \frac{1}{2} \right| \\ & = \mathsf{Adv}(\overline{\mathsf{Exp}^{\mathsf{OTS}}}, \mathcal{A}) = \frac{1}{2} \mathsf{Adv}(\mathsf{Exp}^{\mathsf{OTS}}, \mathcal{A}) > \frac{\varepsilon'}{2}, \end{split}$$

dado que por suposición G es un (ε, t) -PRG. Claramente, $t' \approx t$ y $\varepsilon' < 2\varepsilon$. Por lo tanto PR-OTP otorga $(\varepsilon' = 2\varepsilon, t' \approx t)$ -secrecy.

Comentario 17 Otorgar ($\varepsilon' = 2\varepsilon, t' \approx t$)-secrecy quiere decir que un atacante contra Π^G tiene al máximo doble de la ventaja de un atacante contra G. En términos de bit-security, $\log_2(\frac{t}{2\varepsilon}) = \log_2(\frac{t}{\varepsilon}) - 1$, i.e. solamente "un bit" de seguridad es perdido.

Si quisiéramos determinar la seguridad concreta en bits, necesitaríamos una construcción concreta de G, la cual determinaría (ε,t) .

Ahora vamos a ver dos primitivas relacionadas al PRG, utilizadas para construir PRGs y mas.

Definición 10 (PRF) Sean K, R dos conjuntos finitos, D un conjunto. Sea $F: K \times D \to R$ una función implementable como algoritmo determinista eficiente.

$Exp^{\mathrm{PRF}}(\mathcal{A},b)$		R(x)	
1:	$k \stackrel{\$}{\leftarrow} \mathcal{K}$	1:	if $x \not\in L$:
2:	$L \leftarrow [\]$	2:	$y \xleftarrow{\$} \mathcal{R}$
3:	if $b = 0 : \mathcal{O}(\cdot) \leftarrow F(k, \cdot)$	3:	$L[x] \leftarrow y$
4:	else : $\mathcal{O}(\cdot) \leftarrow R(\cdot)$	4:	return $L[x]$
5:	$b' \leftarrow \mathcal{A}^{\mathcal{O}(\cdot)}()$		
6:	$\mathbf{return}\ b'$		

Decimos que F es una familia de funciones (ε, t, q) -pseudoaleatoria indexada por $k \in \mathcal{K}$ (PRF, "pseudorandom function family"), si dado cualquier adversario A que corre en tiempo $\leq t$ y hace $\leq q$ queries (consultas) a $\mathcal{O}(\cdot)$, tiene ventaja

$$\mathsf{Adv}(\mathsf{Exp}^{\mathsf{PRF}},\mathcal{A}) \coloneqq \left| \mathsf{Pr}[\mathsf{Exp}^{\mathsf{PRF}}(\mathcal{A},0) \Rightarrow 1] - \mathsf{Pr}[\mathsf{Exp}^{\mathsf{PRF}}(\mathcal{A},1) \Rightarrow 1] \right| \leq \varepsilon.$$

Comentario 18 Bajo el perfil teórico, un PRG requiere un input aleatorio, y retorna un solo output pseudoaleatorio. Una PRF $F(k,\cdot)\colon \mathcal{D}\to\mathcal{R}$ tolera q inputs $x_i\in\mathcal{D}$ no necesariamente aleatorios, retornando siempre output pseudoaleatorio.