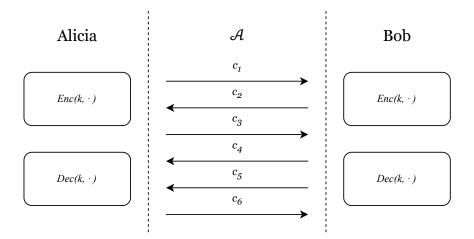
Clase 8: confidencialidad para mensajes múltiples

Fernando Virdia, versión: 0.0.1, junio 2024

4 Cifrar más de un mensaje

Como anteriormente, queremos poder usar un SKES, pero generar mas de un mensaje.



PREGUNTA: Ideas sobre como definiré seguridad "multi-mensajes"?

Podríamos permitirle a \mathcal{A} de ver c_1, \ldots, c_n . Vamos a hacer algo mas: le vamos a permitir pedir el cifrado de mensajes arbitrarios! O sea: sin darle la clave k, le vamos a otorgar un oráculo que calcula $\mathsf{Enc}(k, \cdot)$.

PREGUNTA: Esto podría parecer insólito: como podría \mathcal{A} acceder a $\mathsf{Enc}(k,\cdot)$? Ideas?

- Los mensajes podrían ser previsibles, dándole a \mathcal{A} m y $\mathsf{Enc}(k,m)$.
- \mathcal{A} podría tener control del input directamente, por ejemplo si es un comerciante que introduce en el POS el valor a cobrar, y quiere usar $(m, \mathsf{Enc}(k, m))$ para aprender la clave k.
- A podría saber que el mensaje cifrado es consecuente a alguna acción propia.

Nos inspiramos a la definición de secreto perfecto, donde el adversario trata de distinguir $\operatorname{Enc}(k, m_0)$ de $\operatorname{Enc}(k, m_1)$. En este caso imponemos $|m_0| = |m_1|$ dado que toleraremos $\mathcal{M} = \{0, 1\}^*$.

Definición 12 (IND-CPA security) Sea $\Pi = (Gen, Enc, Dec)$ un SKES.

$Exp^{\mathrm{CPA}}(\mathcal{A},b)$		$\mathcal{O}(n$	$\mathcal{O}(m_0, m_1)$	
1:	$k \leftarrow Gen()$	1:	if $ m_0 \neq m_1 $	
2:	$b' \leftarrow \mathcal{A}^{\mathcal{O}}()$	2:	$\mathbf{return} \perp$	
3:	$\mathbf{return}\ b'$	3:	$c \leftarrow Enc(k, m_b)$	
		4:	$\mathbf{return}\ c$	

Decimos que Π otorga (ε, t, q) -indistinguibilidad bajo ataques de mensaje elegido (IND-CPA, "indistinguishibility under chosen-plaintext attacks"), si para todo adversario \mathcal{A} que corre en tiempo $\leq t$ y hace $\leq q$ queries a \mathcal{O} , su ventaja es

$$\mathsf{Adv}(\mathsf{Exp}^{\mathrm{CPA}},\mathcal{A}) \coloneqq \left| \Pr[\mathsf{Exp}^{\mathrm{CPA}}(\mathcal{A},0) \Rightarrow 1] - \Pr[\mathsf{Exp}^{\mathrm{CPA}}(\mathcal{A},1) \Rightarrow 1] \right| \leq \varepsilon.$$

Comentario 26 Existen definiciones "intermedias" entre (ε, t) -secrecy $y(\varepsilon, t, q)$ -IND-CPA. Como referencia, vean [KL20] o [BS23].

Ejemplo 2

- El OTP no otorga IND-CPA, dado que \mathcal{A} puede pedir $\mathcal{O}(0^n, 0^n) \Rightarrow k$, y obtenida k, puede pedir $\mathcal{O}(0^n, 1^n) \Rightarrow b^n \oplus k$, y así recuperar b.
- Ningún SKES donde $\mathsf{Enc}(k,\cdot)$ es determinista puede otorgar IND-CPA! En cuanto el siguiente ataque aplica:
 - 1. $c_1 \leftarrow \mathcal{O}(0^n, 0^n)$
 - 2. $c_2 \leftarrow \mathcal{O}(0^n, 1^n)$
 - 3. Si $c_1 = c_2$, entonces b = 0. Si $c_1 \neq c_2$, entonces b = 1.

Definición 13 (PRF-CTR) Sea $F: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$ una (ε, t, q) -PRF con $\mathcal{D} = \{0, 1\}^d$ y $\mathcal{R} = \{0, 1\}^r$. Definimos un SKES $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ con $\mathcal{M} = \{0, 1\}^{\ell \cdot r}$ y $\mathcal{C} = \{0, 1\}^{\ell \cdot r + d}$, para algún $\ell \leq 2^d/2$.

```
Gen()
                            Enc(k, m)
                                                                                                \mathsf{Dec}(k, c = (c_0, c_1, \dots, c_\ell))
1: k \stackrel{\$}{\leftarrow} \mathcal{K}
                             1: m_1 || \dots || m_\ell \leftarrow m, donde |m_i| = r
                                                                                                  1: for i = 1, ..., \ell:
2: return k
                                                                                                             y_i \leftarrow F(k, c_0 + i - 1 \bmod 2^d)
                             2: c_0 \stackrel{\$}{\leftarrow} [0, 2^d), \text{ equiv. } \{0, 1\}^d
                                                                                                  3:
                                                                                                            m_i \leftarrow y_i \oplus c_i
                             3: for i = 1, ..., \ell:
                                                                                                  4: m \leftarrow m_1 || \dots || m_\ell
                                        y_i \leftarrow F(k, c_0 + i - 1 \bmod 2^d)
                                                                                                  5: return m
                                        c_i \leftarrow y_i \oplus m_i
                             6: \quad c \leftarrow (c_0, c_1, \dots, c_\ell)
                             7: return c
```

Si usamos una PRP/cifrado de bloques en lugar de F, Π es el modo de cifrado "counter mode" (CTR).

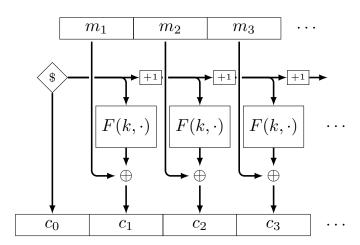


Figure 6: Diagrama de Enc en PRF-CTR. Imagen adaptada de [Ros21, Construction 8.3], usada con permiso del autor.

Comentario 27 El PRF-CTR puede ser paralelizado de manera simple, dado que los y_i son pueden ser calculados de manera independiente. Por lo tanto tiene muy buena eficiencia al cifrar mensajes muy largos.

Comentario 28 Para descifrar, no es necesario "invertir" F. Esto sugiere que si m es largo entre $(\ell-1) \cdot r$ y $\ell \cdot r$, se pueden "cortar" los últimos bits de y_n en Enc, resultando en un cifrado mas corto.